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ABSTRACT 
 
 

The High Level Architecture (HLA) is the Department of 

Defense standard for networking virtual environments.  This 

thesis implements a modular HLA component that can be used 

independently from the graphics-rendering engine used by 

the programmer.  The modular design of the HLA component 

allows programmers of virtual environments to rapidly 

network their existing standalone virtual environments 

using the DOD standard networking protocol.  The HLA 

component is being used to build a networked virtual 

environment compatible with Joint Semi-Automated Forces 

(JSAF).  This networked virtual environment will allow a 

group of human controlled simulations to interact with JSAF 

controlled entities over common terrain. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

The High Level Architecture (HLA) is the Department of 

Defense standard for networking virtual environments.  HLA 

allows a large amount of flexibility and freedom to 

programmers.  However, this flexibility makes implementing 

HLA applications a complex undertaking.  As yet, no tools 

exist to aid programmers to rapidly implement a networked 

virtual environment using the most current version of HLA. 

Additionally, several versions of the HLA Run Time 

Infrastructure (RTI) are available through the Department 

of Defense and commercial industry.  While all these RTIs 

adhere to the HLA specification, applications written to 

one RTI are not 100 percent compatible with all other RTIs.  

This incompatibility can cause extensive engineering costs 

in large-scale simulations, where individual simulations 

were developed for different RTIs.  An open code base is 

needed that allows access to the RTI for fast HLA 

integration. 

This thesis will implement an HLA module that can be 

used to network applications over HLA.  An existing 

application will be able to interface with the HLA module 

to rapidly bring the application into an HLA networked 

environment.  The HLA module will be built in such a way as 

to make the rendering system independent of the HLA module 

provided the rendering system is compatible with C++.  

Since the HLA module is independent of the rendering 

system, programmers will not be limited when developing new 
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applications and existing applications will be compatible 

with this HLA module. 

B. APPROACH 

This thesis will demonstrate an HLA compliant 

application written in C++ using the VEGA API from 

Multigen-Paradigm. However, it will be possible to use 

other C++ based rendering engines without changing any of 

the HLA module code. 

The Object Model Template (OMT) chosen for this 

application is the Real-time Platform Reference Federation 

Object Model (RPR FOM).  This OMT was chosen because of its 

large user base and with the aim to make this application 

compatible with Joint Semi-Automated Forces (JSAF).  The 

modular design of this project will allow for easy 

transition to another FOM. 

C. THESIS ORGANIZATION 

This thesis is organized in the following chapters: 

• Chapter I:  Introduction.  This chapter states 
the problem for this thesis and gives an overview 
of the work. 

• Chapter II:  History of Networked Virtual 
Environment Architectures.  This chapter gives a 
history of networked virtual environment 
architectures  

• Chapter III:  High Level Architecture.  This 
chapter gives an overview of HLA. 

• Chapter IV:  Implementation.  This chapter goes 
over the details of the application’s design.  
This chapter discusses the project’s modular 
design and the application HLA object model. 

• Chapter V:  Testing and Results.  This chapter 
discusses the results of the project. 
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• Chapter VI:  Conclusions.  This chapter contains 
a general discussion of the conclusions drawn 
from this project along with proposed future work 
in this area. 
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II.  HISTORY OF NETWORKED VIRTUAL ENVIRONMENT 
ARCHITECTURES 

A.  OVERVIEW 

The history of the development of the High Level 

Architecture (HLA) can be traced back to two earlier 

projects:  Simulator Networking (SIMNET) and Distributed 

Interactive Simulation (DIS).  Network environment 

architectures began with the Defense Advanced Research 

Project Agency (DARPA) SIMNET project.  Later, the DIS 

project defined a standard network protocol that would 

allow different simulation projects to interact over a 

network.  HLA was developed by the Defense Modeling and 

Simulation Office (DMSO) in conjunction with industry to 

create a more flexible and scalable network architecture as 

a replacement for DIS. 

B.  SIMULATOR NETWORKING  

The DARPA SIMNET project began in 1983.  The following 

shows the purpose behind developing SIMNET. 

SIMNET was started to demonstrate that networks 

of low cost simulators could allow team training 

to be carried out on a virtual battlefield. 

Previously, simulator training was focused on 

learning individual skills with standalone 

simulators.1   

The SIMNET project developed rapidly during the 1980s.  

The original application for SIMNET was a tank gunnery 

                     
1 Proctor, Michael D (Ed.). (no date).  Web-based Technical Reference 

on Simulation Interoperability (online). Available: 
<http://www.engr.ucf.edu/people/proctor/Interoperability%20Text/Text%20
Outline.htm> (29 Aug. 02), Ch. 8. 
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trainer.  For the trainer, four crew stations were linked 

together; one station for each crewmen in a tank.  The 

project quickly expanded to include multiple tanks, 

aircraft, fighting vehicles, and command posts.  By 1990, 

there were approximately 260 different simulators in 11 

different sites involved in SIMNET. 

The SIMNET project was delivered to the Army in 1990 

where the Simulation, Training, Instrumentation Command 

(STRICOM) changed the name to Distributed Interactive 

Simulation. 

C.  DISTRIBUTED INTERACTIVE SIMULATION 

For the SIMNET project, all the simulators were of a 

homogenous type and were all developed by one development 

team lead by DARPA.  The need for an architecture to 

network heterogeneous simulator types was recognized.  The 

DIS project created a network protocol standard that 

allowed simulators from different projects to communicate 

with each other.  The DIS project defined how data was to 

be distributed between simulations to make them 

interoperable. 

Work on developing DIS standards was accomplished at 

semi-annual Workshops on Standards for the Interoperability 

of Distributed Simulations.  Groups of interested 

volunteers met at these workshops in order to discuss, 

develop, and publish DIS standards.  The original standards 

for DIS were approved as IEEE Standard 1278 in 1993.  These 

standards defined the Protocol Data Units (PDU) needed to 

support entity attributes and movement, weapon firing, 

detonations, and collision detection. 
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Distributed Interaction Simulation uses a peer-to-peer 

architecture.  Each simulation in a DIS networked virtual 

environment is linked to all the other member simulations 

of the virtual environment on a computer network.  Member 

simulations of a DIS networked virtual environment directly 

broadcast attribute update and interaction PDUs to all 

other members. 

D.  HIGH LEVEL ARCHITECTURE 

High Level Architecture was designed to replace DIS 

with a more flexible and scalable network architecture.  

HLA was sponsored by DMSO and developed by Science 

Applications International Corporation, Virtual Technology 

Corporation, Object Sciences Corporation, and Dynamic 

Animations Systems.2  In 1998 HLA was set as the standard 

network simulation architecture for all new DOD networked 

virtual environment projects.  HLA has been criticized 

because the protocol was not opened to a standards 

organization, like DIS was, for review while it was being 

developed. 

HLA was developed to address the limitations of DIS.  

The number of entities in a DIS system is limited because 

DIS is built on a peer-to-peer model where entity updates 

are broadcast to the entire network.  As the number of 

entities increase, the congestion in the network increases 

until the network becomes saturated.  HLA combats this 

problem by using a Run Time Infrastructure (RTI).  

Simulations send their updates to the RTI, which keeps 

track of which other simulations are interested in those 

                     
2 Department of Defense, Defense Modeling and Simulation Office. (no 

date). High Level Architecture RTI 1.3-Next Generation Programmer’s 
Guide, Version 4, inside cover. 
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updates and the RTI then sends the updates to interested 

parties over a multicast connection.  Thus, redundant and 

extraneous transmissions are filtered out, resulting in 

fewer packets sent over the network, which reduces network 

congestion. 

Difficulties exist in creating a single protocol that 

meets the needs of all simulation applications.  Therefore, 

key components of some simulations may not be supported by 

DIS and therefore cannot be represented over the network.  

The High Level Architecture is a more flexible architecture 

because it lets programmers define their own set of entity 

attributes and interactions called the Federation Object 

Model (FOM). 

DIS also has no provisions for time management.  Each 

simulation runs in real time and sends its updates over the 

network.  Since each simulation runs independently, 

synchronization problems can occur between simulations 

making it nearly impossible for each simulation to maintain 

a consistent view of the virtual environment.  HLA does 

provide support for time management. 

E.  OTHER APPROACHES 

The computer entertainment industry has developed 

other architectures to network virtual environments.  

Computer game companies are capable of hosting massive 

multiplayer games online through the use of DirectX or 

similar technologies.  These multiplayer games are based on 

a client/server architecture where the data for the virtual 

world resides on the server.  As a player moves into a new 

area of the virtual world, the client downloads the world 

data from the server.  Interactions between players or 



  9 

other entities are routed through the server to other 

players in the same area.   

While this architecture works well for games, it is 

not suitable for military training networked simulations at 

this time.  To ensure adequate network performance, there 

is a limit to the level of detail in the virtual world that 

can be downloaded to a client in a reasonable amount of 

time.  While game players are happy with the level of 

detail provided in games, the level of detail is not 

adequate for military applications. 

In HLA applications, each simulation maintains its own 

database of the virtual environment.  Changes in the 

environment can be distributed among the simulations.  

Since each simulation maintains its own model of the 

virtual environment, the level of detail can be much 

greater providing for a higher fidelity virtual 

environment. 
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III.  HIGH LEVEL ARCHITECTURE 

A.  OVERVIEW 

The High Level Architecture was developed to establish  

a common high-level simulation architecture 

to facilitate the interoperability of all 

types of models and simulations among 

themselves and with C4I systems. The HLA is 

designed to promote standardization in the 

M&S community and to facilitate the reuse of 

M&S components.3 

An HLA application includes a federation composed of 

one to many federates.  A federation is group of 

simulations that interact in the same virtual environment.  

A federate is a member simulation of a federation.  

Federates communicate with each other through the Run Time 

Infrastructure (RTI).  Federates register their entities 

and subscribe to entities of interest with the RTI.  The 

RTI controls the data transfer between federates.  The RTI 

is responsible for ensuring data is sent from the 

publishing federates to the subscribing federates. 

The HLA architecture consists of three components.4 

• Federation Rules 

o Ensure proper interaction of simulations in 

a federation. 

o Describe the simulation and federate 

responsibilities. 
                     

3 Ibid, p. 1-2. 

4 Ibid, p. 1-3. 
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• Interface Specification 

o Defines Run-Time Infrastructure services. 

o Identifies callback functions each federate 

must provide. 

• Object Model Template (OMT) 

o Provides a common method for recording 

information. 

o Establishes the format of key models: 

 Federation Object Model (FOM) 

 Simulation Object Model (SOM) 

 Management Object Model (MOM) 

B.  FEDERATION RULES5 

1. Federation Rules: 

1. Federations shall have an HLA FOM, documented in 

accordance with the HLA Object Model Template OMT. 

2. In a federation, all representation of objects in 

the FOM shall be in the federates, not in the RTI. 

3. During a federation execution, all exchange of FOM 

data among federates shall occur via the RTI. 

4. During a federation execution, federates shall 

interact with the RTI in accordance with the HLA interface 

specification. 

5. During a federation execution, an attribute of an 

instance of an object shall be owned by only one federate 

at any given time. 

 
                     

5 Ibid, pp. 1-3 and 1-4. 
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2. Federate Rules: 

6. Federates shall have an HLA SOM, documented in 

accordance with the HLA Object Model Template (OMT). 

7. Federates shall be able to update and/or reflect 

any attributes of objects in their SOM and send and/or 

receive SOM object interactions externally, as specified in 

their SOM. 

8. Federates shall be able to transfer and/or accept 

ownership of an attribute dynamically during a federation 

execution, as specified in their SOM.  

9. Federates shall be able to vary the conditions 

under which they provide updates of attributes of objects, 

as specified in their SOM. 

10. Federates shall be able to manage local time in a 

way that will allow them to coordinate data exchange with 

other members of a federation. 

C. INTERFACE SPECIFICATION 

The interface specification determines how federates 

interact with the federation through the RTI.  The 

specification consists of six management areas. 
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1. Federation Management 

 

Figure 1.   Federation Management. (From:  ref. 2) 

 

2. Declaration Management 

 

Figure 2.   Declaration Management. (From:  ref. 2) 
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3. Object Management 

 

Figure 3.   Object Management. (From:  ref. 2) 

 

4. Ownership Management 

 

Figure 4.   Ownership Management. (From:  ref. 2) 
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5. Time Management 

 

Figure 5.   Time Management. (From:  ref. 2) 

 

6. Data Distribution Management 

 

Figure 6.   Data Distribution Management. 
 (From:  ref. 2) 
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D. OBJECT MODEL TEMPLATE (OMT) 

The OMT establishes a common framework for object and 

interaction model documentation.  The standard OMT provides 

a common method for describing HLA Object Models. 

A FOM is an object model common to all federates in a 

federation.  When a federation is created, the RTI reads 

the FOM in order to know what objects and interactions to 

expect.  All federates in a federation must use the same 

FOM so that the RTI can coordinate and control the data 

transfer between federates.  If a federate were able to use 

a different FOM, then that federate would not be able to 

recognize the objects and interactions that are passed back 

and forth. 

The FOM is composed of two classes:  objects and 

interactions.  Objects are entities in the federate that 

have persistence.  Examples of objects are tanks, aircraft, 

and ships.  Attributes are used to describe an object.  

Examples of attributes are world position, orientation, and 

velocity.  Interactions are non-persistent occurrences such 

as collisions, munition detonations, and weapons fire 

notifications.  Interactions are made up of parameters.  

Examples of parameters are detonation location and 

detonation result. 

An OMT for a specific FOM defines the objects and 

interactions for a FOM.  For each object, the OMT defines 

that objects attributes.  For each interaction, the OMT 

defines its parameters.  Further, the OMT defines the data 

type of the parameters and attributes, cardinality (size of 

an array or sequence), units, and accuracy (maximum 

deviation from its intended value in the federate). 
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E.  RUN TIME INFRASTRUCTURE 

The RTI used for this thesis is the Defense Modeling 

and Simulation Office RTI 1.3-Next Generation Version 6.  

This RTI was chosen because it is the RTI used by JSAF. 

The RTI Executive (RtiExec), the Federation 

Executive(FedExec), and the RTI libraty (libRTI) are the 

three components that make up the RTI.   

1.  RTI Executive 

The RtiExec is a process that manages multiple 

Federation Executions in a network.  Running the 

rtiexec.exe program starts the RtiExec.  The RtiExec 

listens on an established multi-cast port for requests from 

federates to create and destroy federations.  When a 

request for a federation creation is received, the RtiExec 

spawns a federation execution process to manage that 

federation.  Requests from federates to join or resign a 

federation are directed to the appropriate FedExec by the 

RtiExec. 

2.  Federation Executive 

The FedExec manages multiple federates in a 

federation.  The FedExec processes join and resign requests 

from federates.  The FedExec also controls and coordinates 

the data transfer between federates. 

3.  RTI Library 

The RTI Library provides an interface to HLA services 

for the federates.  The RTI Library contains two ambassador 

classes that enable communication between the federation 

and the federates:  The RTIambassador class and the 

FederateAmbassador class.  The RTI Library also contains 
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supporting classes and types that facilitate data transfer, 

see Appendix C of the HLA Programmer’s Guide6 for 

documentation of these classes and types. 

a.  RTIambassador Class 

All requests from a federate to the RTI are made 

by making method calls to the RTIambassador class.  

Federates must declare an instance of an RTIambassador in 

order to communicate with the RTI.  Appendix A of the HLA 

Programmer’s Guide7 contains descriptions of the methods of 

the RTIambassador class. 

b.  FederateAmbassador Class 

The FederateAmbassador class is an abstract class 

in libRTI that must be implemented by each federate.  The 

libRTI FederateAmbassador identifies callback functions 

that each federate must support.  The RTI uses these 

callback functions to send data to the federates.  Appendix 

B of the HLA Programmer’s Guide8 contains descriptions of 

the methods that must be supported by federate 

implementations of the FederateAmbassador class. 

                     
6 Ibid.  Appendix C. 

7 Ibid.  Appendix A. 

8 Ibid.  Appendix B. 
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Figure 7.   RTI and Federate Code Responsibilities. 
(From:  ref. 2) 

 

F.  BASIC SEQUENCE OF EVENTS IN A FEDERATION 

An HLA simulation follows a sequence of events from 

federation creation to destruction.  A FedExec is created 

when a federate makes a create federation call to the 

RtiExec using an RTIambassador.  During the process of 

creation the FedExec reads in the FOM for the federation, 

so that the federation will know what kind of objects and 

interactions can be expected during the simulation.  After 

successful creation of a federation the federate makes a 

call to the FedExec to join the federation.  The federate 

then publishes object attributes and interactions to the 

FedExec that the federate is capable of producing.  The 

federate then creates and registers objects with the 

FedExec.  The federate also subscribes to object and 

interactions types in the FOM that the federate is 
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interested in receiving from other federates in the 

federation.  As other federates register their objects with 

the federation, the FedExec makes object discover calls to 

the FederateAmbassador of the federate.  As the simulation 

progresses, the federate sends object attribute updates and 

interactions to the FedExec so that they can be distributed 

to other federates.  The FedExec sends object attribute 

updates to the federate via the FederateAmbassador.  During 

the simulation objects can be destroyed and therefore must 

be deleted from the federate.  When the federate shuts 

down, it resigns from the FedExec.  Finally, the last 

federate to leave the federation makes a call to destroy 

the federation. 

 

Figure 8.   Federate and Federation Interplay.  
(From:  ref. 2) 
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IV. IMPLEMENTATION 

The implementation of this thesis was completed in 

conjunction with Southwest Research Institute.  This thesis 

was implemented with a C++ application and the DMSO RTI 

1.3NG version 6.  The application demonstrates an HLA 

implementation that supports the basic HLA services needed 

to run an HLA simulation.  Services supported include:  

federation creation, join federation, resign federation, 

federation destruction, object and interaction publication, 

object and interaction subscription, object creation, 

object registration, sending and receiving object attribute 

updates, and sending and receiving interactions.  These 

services will be covered in more detail below. 

A. HIGH LEVEL ARCHITECTURE MODULE DESIGN 

The HLA module consists of several classes.  All of 

the HLA module classes begin with hm to help identify them 

as members of the HLA module.  The hmDisplayController 

class controls the function calls to the rendering system.  

The hmHLAController class controls and coordinates services 

of the HLA.  The hmFederateAmbassador class is the 

implementation of the RTI virtual class FederateAmbassador.  

The hmFederateAmbassador class receives communications from 

the RTI.  The hmHLAObjectClass class will have one instance 

for each type of object that will interact with the RTI and 

will contain type wide attributes for that object type.  

The hmHLAObject class represents individual objects that 

interact with the RTI.  The hmInteractionClass class 

handles interactions such as collisions and weapons fires.  

The hmHandleValuePair class is used to pair the RTI handle 
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for an attribute or parameter with its value.  HLA objects 

use lists of hmHandleValuePairs to represent their 

attributes. 

 

hmHLAController

hmDisplayController

hmInteractionClasshmHLAObjectClass hmFederateAmbassador

hmHandleValuePairhmHLAObject

from RTI

 

 

Figure 9.   Class Relationship Diagram. 

 

1.  hmHLAController Class 

The hmHLAController class coordinates HLA services.  

The class constructor creates a federation in the RTI if a 

federation by the same name has not already been created.  
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The constructor also joins the federate to the federation.  

The destructor resigns a federation and destroys a 

federation when no other federates are joined to a 

federation.  The hmHLAController functions coordinate the 

transfer of data between the RTI federation and the 

federate. 

2.  hmDisplayController Class 

The hmDisplayController class is inherited from the 

hmHLAController Class.  The hmDisplayController class 

coordinates the transfer of data for the HLA module.  The 

hmDisplayController class is the interface to a larger 

application.  The hmDisplayController class makes all 

function calls to the rendering engine Application 

Programmer’s Interface (API) for the HLA module, VEGA in 

this case.  Since hmDisplayController is the only class in 

the HLA module that makes calls to the rendering engine, it 

is the only class that must be adjusted when switching to a 

different rendering engine. 

Only one instance of an hmDisplayController should be 

declared in each federate in a federation.  As it is 

written now, the hmDisplayController constructor 

initializes Vega, which only needs to be done once.  Since 

hmDisplayController is inherited from hmHLAController, when 

an instance of hmDisplayController is declared the 

constructor for hmHLAController is also called.  The 

hmHLAController constructor goes through the steps required 

to create and join a federation, which again only needs to 

occur once per federate. 

Since hmDisplayController inherits from 

hmHLAController, no instance of an hmHLAController is 
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declared in the application.  The hmDisplayController has 

access to all the HLA service functions of the 

hmHLAController, so all HLA service calls in the 

application call the hmDisplayController instance.  The 

hmDisplayController class has overloaded functions for the 

functions in hmHLAController that require communication 

with the rendering engine, such as receiving object 

attribute updates from the RTI. 

3.  hmFederateAmbassador 

The hmFederateAmbassador class is the HLA module 

implementation of the pure virtual class FederateAmbassador 

found in libRTI.  The hmFederateAmbassador is the means by 

which the RTI federation communicates with the federate.  

This application only supports the object management 

functions of the FederateAmbassador Class.  The 

hmFederateAmbassador keeps a pointer to the hmHLAController 

for the federate the hmFederateAmbassador is associated 

with.  The hmHLAController pointer actually points to an 

hmDisplayController instance because no instance of an 

hmHLAController exists in this application.  Since the 

hmDisplayController class inherits from the hmHLAController 

class, polymorphism allows an hmHLAController pointer to 

point to an hmDisplayController instance. 

4.  hmHLAObjectClass 

The hmHLAObjectClass class is responsible for managing 

the different types of objects in the federate.  The 

hmHLAObjectClass handles the object type wide services such 

as publication and subscription.  The hmHLAObjectClass will 

have one instance for each type of object in the federate.  

The class maintains a static list of all of its instances.  
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The hmHLAObjectClass class maintains lists of published 

attributes, published object types and subscribed object 

types.  The hmHLAObjectClass class keeps a member variable 

to hold the RTI ObjectClassHandle so that each instance 

knows the handle the FedExec uses to identify it.  The 

hmHLAObjectClass class also maintains a pointer to the 

federate’s RTIambassador. 

5.  hmHLAObject 

The hmHLAObject class is responsible for managing the 

individual HLA objects in the federate.  This class handles 

services such as sending and receiving attribute updates.  

The hmHLAObject class maintains a static list of all 

instances of the class.   

Each hmHLAObject maintains several member variables in 

order to carry out its functions.  The p_Handle variable is 

an RTI ObjectHandle, which is what the object is known as 

in the FedExec.  Each hmHLAObject also keeps a handle to 

its object class, so that it knows what type of object it 

is.  Another important member variable is a pointer to a 

visual object.  The p_VisualObjPtr is a pointer to the 

object in the rendering system that represents this HLA 

object.  This variable is important because when an update 

is received from the FedExec, the HLA object knows which 

rendering system object must be updated.  This variable is 

stored as a void pointer to keep it general so that other 

rendering engines can be used without having to change the 

hmHLAObject class.  Each object also keeps a pointer to the 

RTIambassador for the federate. 
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6.  hmHLAInteractionClass 

The hmHLAInteractionClass class is responsible for 

managing interaction services.  This class processes the 

publishing, subscribing, sending and receiving for the 

different types of interactions supported by the federate.  

The hmHLAInteractionClass class maintains a list of its 

instances.  The hmHLAInteractionClass maintains lists of 

published and subscribed interaction classes.  This class 

also has a pointer to the federate’s RTIambassador.  Each 

instance keeps an RTI handle for its interaction class. 

7.  hmHandleValuePair 

The hmHandleValuePair class matches the RTI handle for 

an object or interaction to the value held by that object 

or interaction.  Lists of hmHandleValuePairs are used to 

process the sending and receiving of object attribute 

updates and interactions.  Lists of hmHandleValuePairs are 

used so that the hmHLAObject and hmInteractionClass classes 

can process different types of objects and interactions.  

This also means that different FOMs can be easily 

supported.  As long as the hmHandleValuePair class can 

handle the data types of the FOM, the HLA module can 

process the objects and interactions of any FOM.  Current 

data types supported by the hmHandleValuePair class include 

string, integer, float, double, a C++ struct consisting of 

three floats, and a C++ struct consisting of three doubles.  

Another advantage is that only one class for objects and 

interactions needs to be written.  The hmHLAObject and 

hmInteractionClass classes can process different types of 

objects and interactions. 
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B.  HIGH LEVEL ARCHITECTURE SERVICES 

The basic services of creating, destroying, joining, 

and resigning a federation executive are handled in the 

hmHLAController class by making appropriate calls to the 

RTI using an RTIambassador. 

The processes for handling object and interaction 

services are detailed below. 

1.  Publishing Object Attributes 

When a federate joins a federation execution, it must 

inform the FedExec of the types of objects the federate 

will be producing.  It must also specify the attributes of 

those objects for which the federate will be sending 

updates. 

To publish object attributes, first a call is made to 

the hmDisplayController function PublishObject (function 

inherited from hmHLAController) that takes string and 

vector of strings as its parameters.  The first parameter 

is the name of the object class taken from the FOM.  The 

second parameter is a list of the names of the attributes 

being published.  The names of the attributes are also 

taken from the FOM. 

The PublishObject function first searches the instance 

list of the hmHLAObjectClass for an instance with the same 

class name.  If an instance is not found, then a new 

instance is created.  Next, a call is made to the 

hmHLAObjectClass’s Publish function.   

The Publish function takes the input parameter handle 

list and converts it to an AttributeHandleSet from libRTI.  

The function then makes a call to the RTIambassador’s 
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publishObjectClass function with the class handle and the 

AttributeHandleSet as a parameter and publishes the 

attributes in the FedExec.  Next, the handle list and the 

AttributeHandleSet are added to the list of published 

attributes.  Lastly, the object class is added to the list 

of published object classes. 

The process for subscribing to object types is very 

similar to the publishing process and follows the same 

logical flow. 

call made to
hmDisplayController

PublishObject(obj_classname,
handle_list)

hmDisplayController (inherited
from hmHLAController)

Publish(handle_list)

hmHLAObjectClass

+look for obj_classname in
list of object classes

+if not found create a new
hmHLAObjectClass instance

+call Publish

+create an RTI::AttributeHandleSet

+call
RTIambassador::publishObjectClass

+add the attributes to the list of
published attributes

+add to the list of object types that have
been published

 

Figure 10.   Publish Object Attributes. 

 

2.  Creating a Local Object 

When a simulation creates an object to be displayed in 

the simulation and wants that object to be shared with the 

federation, an HLA object needs to be created and 

registered with the FedExec. 
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Before an hmHLAObject local to the federate can be 

created, the attributes it will be sharing must be 

published with the FedExec.  To create a local hmHLAObject, 

a call is made to the hmDisplayController function 

CreateLocalObject (inherited from hmHLAController).  The 

CreateLocalObject function takes two input parameters:  a 

string and a void pointer.  The first parameter is the 

object class name taken from the FOM.  The second parameter 

is a pointer to the rendering system object cast to a void 

pointer.  The CreateLocalObject function declares a new 

hmHLAObject and passes the class name string, a pointer to 

the RTIambassador, and a pointer to the visual object to 

the hmHLAObject constructor.  When the CreateLocalObject 

function completes, it returns a handle to the newly 

created object. 

The hmHLAObject constructor called from 

CreateLocalObject initializes the object with the input 

parameters.  The constructor then registers the new object 

with the FedExec by calling the RTIambassador’s 

registerObjectInstance function.  Registering the object 

informs the FedExec of the object, so that the FedExec can 

process the object’s updates. 
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Figure 11.   Create a Local Object. 
 

3.  Create a Remote Object 

When the FedExec discovers a new instance of an object 

class that the federate has subscribed to, the FedExec 

calls the federate’s FederateAmbassador function 

discoverObjectInstance.  The discoverObjectInstance 

function takes three parameters:  a handle for the object, 

a handle for the object’s class, and a character string 

representing a FedExec designated name for the object.   

First, the hmFederateAmbassador implementation of 

discoverObjectInstance checks the object class handle 

against the list of subscribed object classes to ensure 

that the object is of a type that the federate is 

interested in.  If the object class is not in the 

subscribed class list, then an error message is displayed 

and the function terminates.  If the object class is in the 

list of subscribed object classes, then the 

call to hmDisplayController

CreateLocalObject(obj_class,
(void*) visObj)

hmDisplayController (inherited
from hmHLAController)

hmHLAObject(obj_class,
rtiAmb, visObj)

hmHLAObject

note:  at least one attribute of the
object must have been published
prior to calling this function.

+declare a new hmHLAObject

+return the handle for the object

+initialize the object

+register the object with the
RTI, RTIambassador::
registerObjectInstance
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CreateRemoteObject function of hmDisplayController 

(inherited from hmHLAController) is called. 

The CreateRemoteObject function declares a new 

hmHLAObject and passes the object handle, object class 

handle, and a pointer to the RTIambassador to the 

constructor.  The CreateRemoteObject then creates a new 

rendering system object that matches the object class, so 

the new object can be displayed in the simulation.  The 

function then calls the SetVisualObj function of the 

hmHLAObject class with a void pointer to the new visual 

object as a parameter.  The SetVisualObj function sets the 

visual object for the hmHLAObject instance. 

RTI calls

discoverObjectInstance(
theObject, theObjectClass,

theObjectName)

hmFederateAmbassador

CreateRemoteObject( theObject,
theObjectClass)

hmDisplayController
(inherited from hmHLAController)

+check to make sure this is an
object of a subscribed class

+call CreateRemoteObject

+create a new  hmHLAObject
(objHan, objCHan, rtiAmb)

+create a new display object

+set the visual object of the
hmHLAObject  

Figure 12.   Create a Remote Object. 

 

4.  Send a Local Object Attribute Update 

When an application decides to send an update to an 

object’s attributes to the FedExec, the application builds 

a list of hmHandleValuePairs for the attributes to be 

updated.  The hmHandleValuePairs contain the FOM attribute 
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name and the new value for that attribute.  The application 

then calls the SendObject function of the 

hmDisplayController class (inherited from hmHLAController).  

The SendObject function takes two parameters:  the 

hmHLAObject’s handle and the list of hmHandleValuePairs.  

The SendObject function finds the hmHLAObject in the list 

of hmHLAObject instances and then calls that hmHLAObject 

instance’s Send function. 

The hmHLAObject function Send has just one parameter:  

the list of hmHandleValuePairs.  First, the function 

converts the list of hmHandleValuePairs to an RTI 

AttributeHandleValuePairSet.  The function then calls the 

RTIambassador function updateAttributeValues to send the 

updates to the FedExec.  The updateAttributeValues function 

takes three parameters:  the object handle, the 

AttributeHandleValuePairSet, and a character string tag. 

call to hmDisplayController

SendObject(objHandle,
handleValueList)

hmDisplayController (inherited
from hmHLAController)

Send(handleValueList)

hmHLAObject

+find this object in the instance
list

+call Send

+create an
RTI::AttributeHandleValuePairSet
from the handleValueList

+call RTIambassador::
updateAttributeValues

 

Figure 13.   Send a Local Object Update. 
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5.  Receive a Remote Object Attribute Update 

When the FedExec receives an attribute update for 

object type that a federate has subscribed to, the FedExec 

makes a call to the federate’s FederateAmbassador to 

reflect the attribute updates.  The function called is 

reflectAttributeValues, which takes three parameters in 

this implementation.  Those parameters are the handle to 

the object being updated, the AttributeHandleValuePairSet 

for the attributes being updated, and a character string 

tag. 

The hmFederateAmbassador implementation of 

reflectAttributeValues first finds the object being updated 

in the list of hmHLAObject instances.  The function then 

calls that instance’s Receive function. 

The hmHLAObject Receive function has two parameters:  

the AttributeHandleValuePairSet and a pointer to a 

hmHLAController (an hmDisplayController instance in this 

case). The hmHLAObject Receive function then converts the 

AttributeHandleValuePairSet into a list of 

hmHandleValuePairs.  The Receive function then calls the 

hmDisplayController function ReceiveObjUpdate_cb 

(overloaded function from hmHLAController). 

The ReceiveObjUpdate function takes two parameters:  a 

pointer to the hmHLAObject being updated and the list of 

hmHandleValuePairs.  The function determines the 

hmHLAObjectClass of the hmHLAObject, so that the function 

can properly update the rendering system object.  The 

function then applies the appropriate updates. 
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RTI calls

reflectAttributeValues(
theObject, attributes, tag)

hmFederateAmbassador

Receive(attributes, hlaCntrl)

hmHLAObject

+find the object in the instance
list

+call Receive

+convert the
RTI::AttributeHandleValuePairSet
to a vector of
hmHandleValuePairs

+call ReceiveObjUpdate_cb

ReceiveObjUpdate_cb(objPtr,
handleValueList)

hmDisplayController
(overloaded function from

hmHLAController)

+determine the object class

+update the visual object

 

Figure 14.   Receive a Remote Update. 

 

6.  Publish an Interaction 

A federate must inform its FedExec what kinds of 

interactions the federate is capable of producing before it 

can start sending interactions to the FedExec.  The 

federate informs the FedExec by publishing the types of 

interactions it can produce. 

To publish a type of interaction, the application 

calls the PublishInteraction function of the 

hmDisplayController class (inherited from hmHLAController).  

This function has just one parameter:  a string that is the 

interaction class name taken from the FOM.  The 

PublishInteraction function first checks to see if a 

hmHLAInteractionClass instance exists with the class name 

input as a parameter to the function.  If no such instance 

exists, the function declares a new hmHLAInteractionClass 

instance.  The function then calls the 

hmHLAInteractionClass instance’s Publish function 

The hmHLAInteractionClass Publish function calls the 

RTIambassador function publishInteractionClass to publish 
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the interaction class with the FedExec.  The function then 

adds the hmHLAInteractionClass instance to the list of 

published interaction classes. 

call to hmDisplayController

PublishInteraction(
interactionClassname)

hmDisplayController (inherited
from hmHLAController)

Publish()

hmHLAInteractionClass

+check to see if an instance of
the interaction exists

+if no, create a
hmInteractionClass instance

+call Publish

+call RTIambassador::
publishInteractionClass(
classHandle)

+add this interaction class to the
map of published interaction
classes

 

Figure 15.   Publish an Interaction. 

 

7.  Send an Interaction 

The framework exists in this implementation to send 

interactions, but currently no interactions are implemented 

in the test application.   

When an interaction is generated by an application, 

the SendInteraction function of the hmDisplayController 

class is called (inherited from hmHLAController).  The 

parameters of this function are a string representing the 

FOM name for the interaction class and a list of 

HandleValuePairs containing the parameters for the 

interaction.  First, the function checks to see that this 

interaction class has been published.  If the interaction 
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class has been published, then the function calls the 

hmHLAInteractionClass function Send. 

The hmHLAInteractionClass function Send takes the 

hmHandleValuePair list as a parameter and then converts the 

list to an RTI ParameterHandleValuePairSet.  The Send 

function then calls the RTIambassador function 

sendInteraction.  The sendInteraction function has the 

following parameters:  a handle to the interaction class, 

the ParameterHandleValuePairSet, and a character string 

tag. 

The process for subscribing to interaction classes is 

very similar to publishing interaction classes. 

call to hmDisplayController

SendInteraction(iClassName,
handleValueList)

hmDisplayController (inherited
from hmHLAController)

Send(handleValueList)

hmHLAInteractionClass

+check to see that this is a
published interaction class

+call Send

+convert the handleValueList to an
RTI::ParameterHandleValuePairSet

+call
RTIambassador::sendInteraction(
classHandle, phvps, tag)

 

Figure 16.   Send an Interaction. 

 

8.  Receive and Interaction 

The framework exists in this implementation to receive 

interactions, but currently no interactions are implemented 

in the test application.   
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When the FedExec receives an interaction of a type 

that the federate has subscribed to, the FedExec makes a 

call to the federate’s FederateAmbassador function 

receiveInteraction.  The receiveInteraction function has 

the following parameters:  the handle to the interaction 

class, an RTI ParameterHandleValuePairSet of the 

interaction’s parameters, and a character string tag. 

This application’s hmFederateAmbassador implementation 

of receiveInteraction first finds the hmHLAInteractionClass 

instance from the hmHLAInteractionClass instance list that 

corresponds to the received interaction.  The function then 

calls the hmHLAInteractionClass instance’s Receive 

function. 

The hmHLAInteractionClass Receive function has two 

parameters:  the ParameterHandleValuePairSet and a pointer 

to an hmHLAController (an hmDisplayController instance in 

this case). The Receive function takes the input 

ParameterHandleValuePairSet and converts it to a list of 

hmHandleValuePairs.  The function then calls the 

ReceiveInteraction_cb function of the hmDisplayController 

class (overloaded function of hmHLAController).   

The ReceiveInteraction_cb function takes the following 

parameters:  a pointer to the hmHLAInteractionClass 

instance and the list of hmHandleValuePairs.  The 

ReceiveInteraction_cb function processes the interaction 

depending on what type of interaction is received. 
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RTI calls

receiveInteraction(
theInteraction, theParameters,

tag)

hmFederateAmbassador

Receive(theParameters,
hlaCntrlPtr)

hmHLAInteractionClass

+find the hmHLAInteractionClass
instance

+call Receive

+convert the
RTI::ParameterHandleValuePairSet
to a handleValueList

+call ReceiveInteraction_cb

ReceiveInteraction_cb(
interactionClass,
handleValueList)

hmDisplayController
(overloaded function from

hmHLAController)

 

Figure 17.   Receive an Interaction. 

 

C. OBJECT MODEL 

The Federation Object Model chosen was the Real-time 

Platform Reference Federation Object Model (RPR FOM) 

Version 1.  The RPR FOM was developed by the Simulation 

Interoperability Standards Organization, Inc. (SISO).  

Details of this object model can be found in the Guidance, 

Rationale, and Interoperability Modalities for the Real-

time Platform Reference Federation Object Model (GRIM RPR 

FOM).9  This FOM was chosen for its wide usage and its 

compatibility with Joint Semi-Autonomous Forces (JSAF).  

The FedExec reads the RPR FOM from the rpr-1.0.fed file. 

The RPR FOM was designed to provide Distributed 

Interactive Simulation (DIS) attribute and interaction 

functionality for an HLA object environment.  The RPR FOM 

was designed to help transition DIS applications to HLA.  

The RPR FOM was also designed to provide a general 

framework to enhance interoperability.   
                     

9 Reilly, Sean and Briggs, Keith. (1999). Guidance, Rationale, and 
Interoperability Modalities for the Real-time Platform Reference 
Federation Object Model (RPR-FOM), Version 1.0, SISO, inc. 
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Objects and interactions are maintained in a 

structured hierarchy in the RPR FOM.  The RPR FOM object 

class structure is a four-tier hierarchy.  Objects inherit 

the attributes of the objects in higher tiers of which the 

object is a child.  For example, an aircraft will have 

attributes unique to an aircraft as well as the attributes 

of a platform, physical entity, and a base entity. 

This thesis supports three object classes in the test 

application.  The supported classes are Aircraft, 

AmphibiousVehicle, and GroundVehicle.  All three classes 

inherit from the Platform class, which in term inherits 

from the PhysicalEntity class.  The PhysicalEntity class 

inherits from the BaseEntity class.  For the test 

application, two attributes were supported for these object 

classes:  WorldLocation and Orientation.  WorldLocation and 

Orientation are both attributes of BaseEntity, so the three 

object classes inherited these attributes.  The 

WorldLocation attribute describes an object’s location in 

the simulation by giving x, y, and z coordinates in meters.  

WorldLocation is represented as a C++ struct of three 

doubles.  The Orientation attribute describes the object’s 

orientation in space.  The object’s orientation is 

described by three angles:  Psi or heading, Theta or pitch, 

and Phi or roll.  The units for the three angles are in 

radians.  The Orientation attribute is represented as a 

struct of three floats. 

Interactions in the RPR FOM are structured in a three-

tier hierarchy.  Collision of the EntityInteraction family 

and MunitionDetonation and WeaponFire of the Warfare family 
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would be the most commonly used interactions.  However, no 

interactions are fully supported in the test application. 

D. COMPATIBILITY WITH JOINT SEMI-AUTONOMOUS FORCES  

This thesis was designed to be compatible with JSAF.  

The main reason the RPR FOM was chosen as the FOM for this 

thesis is because JSAF supports it.  Additionally, the RTI 

used in this thesis is the same as the one used by JSAF.  

However, this thesis did not test compatibility with JSAF 

in the test application. 

E. CHANGING RENDERING PLATFORMS 

The HLA module was designed so that only the 

hmDisplayController class needs to be changed when changing 

rendering platforms.  In the test application, the 

hmDisplayController class is the only class that makes 

calls to the VEGA API and the hmDisplayController does not 

makes calls directly to the RTI.   

Several hmDisplayController functions would need to be 

changed to support a new rendering platform.  The 

hmDisplayController constructor would need to be changed to 

initialize the new rendering system and its variables.  The 

two call back functions for receiving attribute updates and 

interactions would need to be changed to process the 

updates for the new rendering platform.  The 

CreateDisplayObject function would need to be changed, so 

that the new object created is an object from the new 

rendering system.  Lastly, the real time loop in the Run 

function would need to be changed so that local object 

updates are generated from the new rendering system. 
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F. INTEGRATING THE HIGH LEVEL ARCHITECTURE MODULE INTO AN 
EXISTING APPLICATION 

The hmDisplayController class is the interface to 

integrate an existing standalone application into an HLA 

supported networked virtual environment.  The Run function 

of the hmDisplayController currently contains the runtime 

loop for the test application.  An existing application 

could adjust the Run function to execute the application’s 

runtime loop and make appropriate calls to the 

application’s classes.   

Another option available would be to use the 

application existing runtime loop and make appropriate 

calls to the hmDisplayController class to communicate with 

the RTI.  In the second option, the hmDisplayController 

class will need to be able to make calls to the rendering 

engine API in order to manipulate the rendering engine 

objects. 

For a large application with many supporting classes, 

using the application’s existing run time loop would be 

preferred.  In this case, making adjustments to the 

hmDisplayController class would be simpler than adapting 

the hmDisplayController Run function and possibly making 

changes to multiple supporting classes. 
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V.  TESTING AND RESULTS 

A. PROTOTYPE SYSTEM 

The initial prototype was a simple application to 

establish a working High Level Architecture (HLA) 

application.  The initial prototype supported only one 

object type and VEGA code was integrated throughout the 

application.  No interaction support was included in the 

prototype.  A simple Federation Object Model (FOM) was used 

in the prototype 

For the prototype, a federate application was run on 

each of two machines with the Run Time Infrastructure (RTI) 

executive running on a third machine.  Each federate had 

one entity that was shared over the network.  Each federate 

used the same terrain model.  The RTI software was loaded 

on all three machines, so that the RTI libraries would be 

available locally on each federate machine.  The initial 

prototype successfully linked the two federates.  Both 

entities could be seen on each federate application.   

Both computers used to test the initial prototype had 

dual one GHz Intel Pentium III processors and a GeForce 3 

graphics card.  Each federate achieved a frame rate of 

approximately 30 frames per second when running the HLA 

application. 

For a comparison with an application run in a 

standalone mode, the LynX active preview tool was used to 

preview the initialization file for the VEGA application.  

The preview tool showed an average frame rate of around 75 

frames per second. 
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B. FINAL DESIGN 

From the prototype, further work was done to add 

support for additional object types and to isolate the 

rendering engine specific code.  Also, the framework for 

supporting interactions was added.  Work was also completed 

to change FOMs to the Real-time Platform Reference 

Federation Object Model (RPR FOM).  This further work lead 

to the development of the final implementation design for 

this thesis. 

The final design of the HLA module was tested using a 

simple application.  Again, two computers were used to run 

one federate each.  However, the RTI executive for this 

test was in another building on campus on the same network.  

One federate had an aircraft object while the other 

federate had an amphibious vehicle object.  A federation 

was successfully created and joined by the federates.  Each 

federate published and registered their local objects and 

subscribed to the object types each was interested in.  

Each federate successfully discovered the others object and 

correctly displayed the correct object type within the 

simulation.  Position and orientation information were 

passed between the federates once per frame.  Each federate 

successfully updated their remote object’s position and 

orientation.  At the termination of the simulation, each 

federate correctly resigned from the federation and the 

federation was destroyed.   

To test the federation simulation, one federate 

application was run on a computer with dual 500 MHz Intel 

Pentium III processors and an Intense3D Wildcat 4000 

graphics card with 16 MB of video RAM.  The other federate 
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was run on a laptop computer with a one GHz Intel Pentium 

III processor and an NVIDIA GeForce2 Go graphics card with 

32MB video RAM.  Frame rates averaged around 20 frames per 

second on both machines.   

For a comparison with an application run in a 

standalone mode, the LynX active preview tool was used to 

preview the initialization file for the VEGA application.  

The preview tool showed an average frame rate of around 80 

frames per second. 
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VI. CONCLUSION 

A. GENERAL DISCUSSION 

The intent of this thesis was to create a High Level 

Architecture (HLA) Module that would allow other 

programmers to quickly develop an HLA compliant simulation.  

To do this, the HLA module had to be as general as possible 

to allow programmers the flexibility to develop 

applications in whatever programming environment most 

suited their needs.  This requirement meant that the core 

of the module had to be independent of the system used to 

render the simulation.  Additionally, support for multiple 

object models was desirable, so attribute and interaction 

handling had to be generalized within the HLA module. 

The HmDisplayController class is interface to 

rendering system and FOM.  The hmDisplayController class 

makes necessary calls to the rendering system that relate 

to HLA services.  The hmDisplayController class coordinates 

data flow in the HLA module; however, it makes no direct 

calls to the RTI.  Handling of FOM data types are 

generalized within the HLA module by using lists of 

hmHandleValuePairs for processing. 

B. CONTRIBUTIONS 

The contribution made by this thesis is a framework on 

which to build HLA compliant networked virtual 

environments.  This thesis provides support for the basic 

services required for any HLA application and a structure 

on which to add support for more HLA services, objects and 

interactions.  Federation HLA Services supported include 

federation creation, join, resign, and destruction.  Object 



  50 

services include publishing, subscribing, creating, 

registering, discovering, and updating.  Interaction 

services include publishing, subscribing, sending, and 

receiving. 

C. FUTURE WORK 

Several areas are available for further study in 

relation to this thesis.  These areas include adding 

additional HLA services, support for more object types and 

attributes and interactions, and increasing application 

performance. 

1.  Additional High Level Architecture Services 

For this thesis a minimum number of HLA services was 

provided.  More service areas exist that could be 

supported.  Time Management, Ownership Management, and Data 

Distribution Management were not supported at all in this 

implementation.  Federation management services such as 

federate synchronization and saving and restoring federates 

could also be supported. 

a.  Time Management 

Time Management is an important service provided 

for in HLA.  Time Management allows federates to remain 

consistent with each ensuring all federates maintain the 

same world picture.  With Time Management, time is advanced 

in a coordinated fashion.  Object updates and interactions 

will have a timestamp in their packets; so that the 

receiving federates know exactly when an event has 

occurred.  A time regulating federate is responsible for 

the progression of time in a constrained federate.  By 

default, HLA applications are not time regulating or time 

constraining. 
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b.  Ownership Management 

A federate owns an object when that federate is 

able to send attribute updates for that object.  Only one 

federate can own an object at any one time.  Ownership 

Management provides methods for transferring ownership 

between federates. 

c.  Data Distribution Management 

In a large simulation with many entities a 

federate may not care about updates for an entity a large 

distance away.  Processing updates for an entity outside of 

a federate’s sensor range would be extraneous and 

inefficient.  Data Distribution Management allows for the 

creation of regions.  With Data Distribution Management, a 

federate will only receive attribute updates and 

interactions that occur within the federate’s region. 

2.  Additional Objects and Interactions 

Only a minimal number of object types and no 

interactions were supported for this implementation.  Of 

the object types supported only object position and 

orientation were supported.  The Real-time Platform 

Reference Federation Object Model (RPR FOM) has defined 

many more object types, attributes and interactions.  

Additional object types that could be supported include sea 

vehicles, space vehicles, and multi-environment vehicles.  

Attributes such as both linear and angular velocity and 

acceleration would need to be supported for a federation 

using dead reckoning for example.  Interactions such as 

collisions, weapon fires, and munition detonations should 

be supported at a minimum in most simulations. 
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3.  Improved Network Performance 

Currently, the test application for this thesis sends 

and receives object attribute updates at frame boundaries.  

This causes an excess amount of network traffic and is not 

scalable past more than just a few entities.  A more 

intelligent method for sending updates is needed.  Updates 

should only be sent when there is a change in attributes of 

an object.  A dead reckoning algorithm should be 

implemented so that federates can continue to move objects 

along a projected path until a new update is received.  A 

heart beat update packet could be sent every five seconds 

for objects with no changes in that time span so that 

federates new that the object still exists in the 

simulation as is done in Distributed Interaction Simulation 

applications. 
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APPENDIX A. C++ SOURCE CODE 

The source code for this implementation will soon be 

available at http://libgf.sourceforge.net. 
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